End-Feeding a Center-Fed Vertical Dipole

Jim Brown K9YC

http://k9yc.com/publish k9yc@arrl.net Lengths shown are approximate for 20M

An End-Center-Fed Vertical Dipole

- Behaves like a center-fed vertical dipole
 - Z_O ~ 70 ohms, so 75 ohm coax is the best match
- Top half is λ/4 wire
- Outside of coax shield is the bottom λ/4
 - Use Vf ~ 0.97 for a PVC insulated 0.25-in conductor
- Ferrite common mode choke acts as end insulator
- Easy to rig with a single support
- Is a single-band antenna
- 40M would work on 15M (third harmonic)

The Ferrite Choke

- Use #31, #43 core materials
- Make resonant near the operating frequency
- Follow winding guidelines in Choke Cookbook (Chapter 8) of k9yc.com/RFI-Ham.pdf
- End of a dipole is a high voltage point
 - High voltage can overheat the choke
 - Higher choking Z reduces heating
 - It's the coax shield that gets hot

The Ferrite Choke

- Choke guidelines for 1.5kW CW/SSB
 - at least 10KΩ
 - $-2-5K\Omega$ chokes in series
 - $-3-3K\Omega$ chokes in series
- For lower power
 - $5K\Omega$ for 500W
 - 1-2K Ω is enough for 100W or less

Coax Guidelines

- For power handling in choke, use
 - A robust copper braid shield above QRP RG6, RG59
 - RG11 with robust copper braid shield above 500W
- Avoid CATV/MATV coax with foil and thin braid shields
- 75Ω coax is best, but 50 ohm coax is OK
- 75Ω is best match to a vertical dipole
- 50Ω may be harder to match at the rig

The Ferrite Choke

- Higher choking Z reduces current through the choke, heat is I²/R
- Two chokes divides power between them, and doubles choking Z
 - Power handling increases by 4:1
- It's the coax shield that gets hot
 - Bigger coax = more thermal mass
- Do not enclose the choke
 - Air flow helps cooling
 - Exposed choke helps heat radiation

End-Feeding a Horizontal Dipole

- This feed method also works to center-feed a horizontal dipole from one end
- For example, a dipole suspended near the window of an upper floor shack in a house, apartment building, or hotel, with the other end suspended in a tree
- Resonant Z of this antenna would be the same as an ordinary horizontal dipole rigged between the same points
 - 50Ω coax best for low antennas (< $\lambda/4$), 75Ω for high ones ($\lambda/2$)

How Much Does Feedline Z_O Matter?

- Feedline SWR and loss is set by the match of the line to the <u>antenna</u>, not to the transmitter
- There is very little additional due to mismatch for SWR < 2:1, but that loss increases significantly if SWR gets larger than about 5:1
- Such a mismatch happens with a dipole off resonance by 3-5% or more
 - Most significant on 80M (+/- 7% bandwidth)
 - The "right" coax matters off resonance with long runs
 - Does not matter for short runs

20M Dipole Rigged For Testing

- Antenna was rigged at W6GJB for testing over 5 mile path to K9YC
- Antenna supported from a pulley that is attached to a rope that supports one end of Glen's 80M dipole, strung between two tall redwood trees. Pulley is at about 80 ft
- Antenna was tested with end insulator at 0, 10, 20, 30, and 40 ft above ground
- Also tested with center at ground level coax laying on ground (acts as single λ/4 radial)

More About This Test

- Path from W6GJB to K9YC is over irregular terrain, generally poor soil
 - Elevation ~ 800 ft ASL at W6GJB
 - Elevation 2,000 ft ASL at K9YC
- RX antenna at K9YC was λ/4 vertical with two radials, to a K3
- TX was a KX3 at 5W
- This test measures low angle radiation

20M dipole rigged through pulley on support rope for another antenna

Field Test of 20M Vertical Dipole Over 5 Mile Path

Height of Choke	RX Signal
Center on ground	-4 dB
6 In	0 dB
10 Ft	+0.5 dB
20 Ft	+3.2 dB
30 Ft	+6.5 dB
40 Ft	+9.5 dB

This result confirms that the ground at W6GJB is quite poor!

Height of Vertical Antennas

- This test was part of a large study of the effect of mounting height of vertical antennas, which shows why the antenna works better when it's higher.
- Slides for a presentation of that work can be downloaded at

k9yc.com/VerticalHeight.pdf

Credits

- I got the idea for this feed method for a vertical dipole from Rudy Severns, N6LF, who used a coil of coax (without a ferrite) as the end insulator of a rather different antenna
- My contribution was to use a ferrite common mode choke with a lossy core material as the end insulator, which more effectively decouples the antenna from the feedline, and makes the antenna essentially independent of feedline length. To understand why, study k9yc.com/RFI-Ham.pdf
- I first published this on my website in 2008 k9yc.com/CoaxChokesPPT.pdf